Southdale

C of E Junior school
Shining like stars in the universe

Addition

Add the tens 2 tens plus 4 tens is 6 tens. We also need to add 1 ten from the regrouping. There are 7 tens altogether.	$\begin{array}{r} \text { т } \\ 25 \\ +\quad 47 \\ 1 \end{array}$	If a column group is equal to ten or more we must regroup. Represent up to one thousand - use through Y3 $\mathbf{1 0 \text { ones is equivalent to } 1 \text { ten. } 1 0}$ and the start of Y4 tens is equivalent to 1 hundred etc. Principle for all calculations NEVER leave a space for the decimal point
For decimals (Y5/6) Diennes represent 1.13		For decimals - use place value headers -after using diennes, counters can be used as a representation. 2 3 1 4 Place holders are used where there is a zero value e.g. $\begin{array}{r} T 0 . t h 1 t h \\ +21.580 \\ 36.21 .4 \\ \hline 57.794 \\ \hline \end{array}$

Subtraction - Before beginning on column subtraction, it is important to ensure that children have already mastered representing subtraction with horizontal expressions and that they are confident in using a range of mental strategies for subtraction. ‘

$$
\begin{aligned}
65-23 & =65-20-3 \\
& =45-3 \\
& =42
\end{aligned}
$$

$$
65-23=42
$$

Ensure that children are confident in using the generalised statement:

'Minuend minus subtrahend is equal to the

 difference.'Use a range of familiar layouts alongside teaching the column method so children see the relationship between the numbers.
Part-part-wholes:

No exchanges
2 digit subtract 2 digit Use place value headers and diennes to represent the calculation. No exchanges. Write the calculation alongside.

Five ones minus three ones is equal to two ones.

Six tens minus two tens is equal to four tens.

Keep the subtrahend visible to teach inverse operations

$$
\begin{array}{ll}
\mathrm{T} & \mathrm{O} \\
6 & 5 \\
2 & 3 \\
\hline 4 & 2
\end{array}
$$

-

The ones column represents five ones minus three ones is equal to two ones.
The tens column represents six tens minus two tens is equal to four tens.

Model using the visuliser Model on the maths wall Model using visuals on IWB Always use place value headers and write the calculation alongside.

Regrouping of tens into hundreds 32×4 Multiply the tens and ones and recombine:	$\begin{aligned} 32 \times 4=30 \times 4+2 \times 4 & \\ =120+8 & \begin{array}{l} \text { 'Three-tens-and-two- } \\ \text { ones multiplied by four is } \\ \text { equal to three tens } \end{array} \\ & \begin{array}{l} \text { multiplied by four and } \\ \text { two ones multiplied by } \\ \text { four.' } \end{array} \\ & \begin{array}{l} 3 \text { tens } \times 4=12 \text { tens } \\ \\ \\ \\ \end{array} \text { ones } \times 4=8 \text { ones } \end{aligned}$

Decimal multiplication			
5.7	0 . 62	12.7	4 . 56
$\times \quad 3$	$\times \quad 8$	$x, 6$	$\times \begin{array}{lll} \\ & 2 \end{array}$
$\begin{array}{ll} 2 & 7^{2} .1 \end{array}$	$4.9^{1} 6$	$\begin{array}{ccc} 1 & 4 & \\ \hline 7 & 6.2 \end{array}$	18.24

long multiplication expanded layout Step one: write the factors			Step two: multiply the ones digits by the ones digits			Step three: multiply the tens digits by the ones digit and regroup		
100s	10s	1s	100s	10s	1s	100s	10s	1s
	. 3	1			$\left[\begin{array}{l} i-1 \\ 1 \end{array}\right.$			
\times	2	4	\times		['
					4	1	2	4
Step four: Place a zero to show that it is ten times the size			Step five: Multiple the ones digit by the tens digit			Step 6: Multiply the tens digit by the tens digit		


```
Compact layout
```



```
\[
\begin{array}{r}
3126 \\
\times \begin{array}{r}
28 \\
450-4 \\
258 \\
62520 \\
\hline 87528
\end{array} .
\end{array}
\]
```

division								
Children are first taught the informal method.								
$\mathbf{8 4} \div \mathbf{4}=$?								
8 tens $\div 4=2$ tens	8 tens	\div	4		$=$		2 tens	
4 ones $\div 4=1$ one	4 ones	\div	4		$=$		1 one	
	84	\div	4		=		21	
72 $\div 3=$?								
7 tens $\div 3=2$ tens $r 1$ ten 1 ten and 2 ones $=12$ ones 12 ones $\div 3=4$ ones	6 tens	\div	3		$=$		2 tens	
	12 ones	\div	3		$=$			4 ones
	72	\div		3		$=$		24
$73 \div 3=$?								
7 tens $\div 3=2$ tens $r 1$ ten	6 tens	\div	3		$=$	2	2 tens	
1 ten and 3 ones $=13$ ones	13 ones	\div	3		$=$	4	4 ones r	1 one
13 ones $\div 3=4$ ones $r 1$ one	73	\div	3		$=$	2	24 r 1	

$\begin{aligned} & \text { Long division } \\ & \begin{array}{rrrrr} & 9 & r 7 \\ 32 & 9 & 5 & \\ 2 & 8 & 8 \\ 0 & 0 & 7 & \\ 2 & & (9 \times 32) \end{array} \\ & \text { so } \\ & 295 \div 32=9 r 7 \end{aligned}$	
431 divided by 31 Step 1 - write the divisor, frame and dividend $3 1 \longdiv { 4 3 4 }$	Step 2 - divide the hundreds $\begin{gathered} 0 \\ 3 1 \longdiv { 4 3 4 } \end{gathered}$ 4 hundreds $\div 31=0$ hundreds $r 4$ hundreds - 'Write " 0 " in the hundreds column of the answer line.'

Step 3 - exchange hundreds for tens,
combine with the existing tens and divide...
$0 \quad 1$
$3 1 \longdiv { 4 3 4 }$
$31 \quad$ (1 ten $\times 31=31$ tens)
4 hundreds $=40$ tens
40 tens +3 tens $=43$ tens
43 tens $\div 31=1$ ten and a remainder

- "Write " 1 " in the tens column of the answer line and write "31" underneath the " 43 ".'
Step 5 - exchange tens for ones and combine with the existing ones
$0 \quad 1$
$3 1 \longdiv { 4 \quad 3 \quad 4 }$
$\begin{array}{lll}\frac{3}{1} & 1 & \downarrow\end{array} \quad$ (1ten $\times 31=31$ tens $)$
12 tens $=120$ ones
120 ones +4 ones $=124$ ones
- 'Write " 4 " after the " 12 ".'

Step 4 - subtract to find the remainder
$0 \quad 1$
$31 \lcm{4 \quad 3 \quad 4}$
$3 \quad 1$
12
43 tens -31 tens $=12$ tens

- 'Write " 12 " underneath the " 31 ".'

Step 6 - divide the ones
$0 \quad 1 \quad 4$
$31 \lcm{4 \quad 3 \quad 4}$
$31 \quad(1$ ten $\times 31=31$ tens $)$

124
$124 \quad$ (4 ones $\times 31=124$ ones)
124 ones $\div 31=4$ ones
(refer to the ratio chart)

- 'Write " 4 " in the ones column of the answer line and write " 124 " underneath the " 124 ", aligning the digits.'

Step 7 - subtract to show there is no remainder	215
$0 \quad 14$ $31 \lcm{434}$	$2 3 \longdiv { 4 9 4 5 }$
31 (1 ten $\times 31=31$ tens)	46
$\begin{array}{llll} 1 & 2 & 4 \\ 1 & 2 & 4 \end{array} \quad(4 \text { ones } \times 31=124 \text { ones })$	34
$\bigcirc 0$	23
124 ones -124 ones $=0$ ones	115
- 'Write "0" underneath the "31".'	115
	0
Long division - remainder converted to a decima29.2	
$\begin{aligned} 2599.2 \\ 250.2 \end{aligned}$	
$\frac{50}{23}$.	
50	
50 tenths $\div 25=2$ tenth	
write " 50 " underneath the " 50 "."	

